
[Pawde et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[551-554]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Review on Code Generation from UML Diagrams
Prajkta R. Pawde*1, Prof. V.Chole2, Prof. P.S. Prasad3

prajkta1688@gmail.com

Abstract
 The Unified Modeling Language (UML) [1] has now become the de-facto industry standard for object-

oriented (OO) software development. UML provides a set of diagrams to model structural and behavioral aspects of

an object-oriented system[2,3].Automatic code generation is efficient which, in turn, helps the software engineers

deliver the software on time. This paper represents an review for generating efficient and compact executable code

from UML diagram. For this we first preprocess the given diagram for its correctness and then verify if for the same

and then try to optimize the obtained diagram from these stages so as to reduce redundancies present in the diagram

and finally generate the code for it.

.

Keywords: UML, source, code, generation, optimization, preprocessing.

 Introduction
At present and in the future, the technology

development is accompanied by an increase in

applications complexity. Code generators are used to

increase code quality and decrease envelopment

time, since their goal is to generate repetitive

source code while maintaining a high consistency

level of the generated program code. Code

generation assumes the mission of writing repetitive

code parts, leaving to programmers more time to

concentrate on specific code. The generators provide

more productivity; generate great volumes of code,

which would take much longer if coded manually.

Consistent code quality is preserved throughout the

entire generated part of a project. Required coding

conventions are consistently applied, unlike

handwritten code, where the quality is subject to

variation. In case of finding errors in generated code,

the errors can be corrected in short time through

revising of templates and re-running the process of

code generation [4].

Nowadays, there exist many software

development tools able to generate source code of

basic application skeleton from its formal description

unfortunately, in many cases these tools lack an

ability to generate complete, production-ready source

code defining both the application structure and logic

suitable for building without need of any

modifications done by a developer. This paper shows

principles and algorithms used in cross-platform

development tool called CodeDesigner RAD [5]

aimed for production ready source code generation

which allows users to generate complete applications

from their formal description.

This paper presents an approach to generate code

from UML diagrams. The most important

characteristic of this approach is the preserved

flexibility towards the target programming language,

accomplished by code generation through two

transformations; first into an intermediate code and

then into the code of a selected target language. Since

the complexity of UML model can vary from simple

to highly complex, an approach provides an efficient

way for generation code from UML diagrams.

Related Work
A series of work on code generation from

UML statechart diagrams are reported by Tanaka et

al. [6, 12]. Niaz and Tanaka [6] propose an approach

to generate Java code from UML class and statechart

diagrams. For code generation, they represent states

as objects, transitions as operations, hierarchical and

concurrent substates by means of object composition

and delegation. To simplify the code generation

process, Niaz and Tanaka introduce a helper object

that encapsulates all the state specific behaviour of a

multi-state domain object.

Engels et al. [12] propose a transformation

process based on collaboration diagram to generate

Java code. For this, Engels et al. provide the

guidelines to transform the collaboration diagrams

into a well-formed structure. Engels et al. consider a

refined meta-model for collaborations, so that well-

formed structured collaboration diagram can be

http://www.ijesrt.com/

[Pawde et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[551-554]

instantiated from the refined meta-model. The

transformation rules are applied on the refined meta-

model to generate Java code. HiberObjects generates

code from UML 1.x SDs using templates for specific

services supported by different types of objects (e.g.

DAO, Persistent).

We now review the existing work [17, 5, 13]

that closely resemble our work. Jakimi and El Koutbi

[17] propose an approach to compose UML SDs

representing a set of scenarios of a use case into a

single SD. For composition of the SDs (i.e. a set of

scenarios), they use four operators: sequential

operator, concurrent operator, conditional operator

and iteration operator. The resultant single SDs

obtained for all use cases are then merged into a

global single SD capturing the behaviour of the entire

system. Finally, code is generated from the global

single SD. The differences between our approach and

Jakimi and El Koutbi approach [17] are as follows.

First, our approach uses fragments to model the

conditional messages in the SDs following UML 2.x

syntax, whereas Jakimi and El Koutbi [17] use UML

1.x syntax to model them. Second, our approach uses

the graph model (SIG) to handle method scope

information. On the other hand, Jakimi and El Koutbi

[17] have not reported how to handle method scope

information which is necessary for the generation of

code of different class methods.

Thongmak and Muenchaisri [5] propose a

set of rules to transform UML SDs into Java code.

For this, Thongmak and Muenchaisri map sequence

and class diagrams into a meta-model and then apply

the transformation rules to the meta-model to

generate Java code. Thongmak and Muenchaisri [5]

follow UML 1.x syntax for modelling the SDs. To

improve the quality of code generation using UML

SD, Usman and Nadeem [13] propose a tool

approach called ‘UJECTOR’. They use class

diagram, SDs, and activity diagrams to generate

structural as well as behavioural code. The object-

oriented code structure is built from class diagram;

flow of control within methods is obtained from the

SDs; object manipulations are derived from activity

diagrams.

Code Generation
 The code generation process consists of

four steps as shown in Fig. 2. First of all a source

diagram is preprocessed so its structure will change

in order to be more suitable for further processing by

the code generator. Preprocessed diagram must be

verified to find possible inconsistencies in the

diagram’s topology. If the verification fails the code

generation process is aborted. After that, a set of

optimization procedures leading to various

simplifications of the diagram’s structure can be

performed on the verified diagram. The last step

represents a final generation of a source code from

verified and optimized diagram. This task is

performed by a functional object called code

generator.

Fig. 1: Code Generation Process

The code generator reads the structure of

modified diagram and writes source code fragments

accordingly to the used code generation algorithm to

output source file(s). Code generation algorithms can

be filtered by output programming language since

some language doesn’t have to support all command

statements produced by the algorithm. Generally,

there are four basic types of code fragments:

_ functions declarations and definitions,

_ variables declarations and assignments,

_ conditional statements,

_ user-defined source code of methods/functions and

the conditional statements.

Code generation algorithms use so called element

processors which provide symbolic code tokens for

processed diagram elements. These symbolic tokens

are converted into textual code fragments by

language processors with syntax in accordance to the

used output programming language specification.

Several language processors can be used at the same

time so we can get set of source files in different

programming languages during one code generation

process. The complete structure of source code

generator implemented in CodeDesigner RAD is

shown in Fig 2

http://www.ijesrt.com/

[Pawde et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[551-554]

Fig. 2: Structure of code generator

A. Diagram preprocessing

 Preprocessing of source diagrams implemented

in CodeDesigner RAD is used for deconvolution of

hierarchical state charts [5] into classic Mealy state

machines [1] further processed by state chart code

generator.

The deconvolution process consists of four dependent

steps:

1. conversion of entry/exit state actions into

transition actions

– the algorithm checks all states in the diagram

whether they include entry/exit actions and assign

those actions to all non-state-loop (i.e. transitions

starting and ending in different states)

incoming/outcoming transitions

2. Re-connection of state outputs
– the algorithm creates copies of conditional

transitions starting in parent hierarchical state and

connects them to all (next level) child states.The

condition-less transitions starting in the parent

hierarchical state will be connected to embedded final

state. The child states must be processed from the top

level to the bottom level so BFS algorithm [17] must

be used for retrieving of the child states. The simple

illustration of this modification

3. Re-connection of state inputs
– the algorithm re-connects all transitions starting in

embedded initial states (i.e. initial states placed inside

a hierarchical state) to their parent hierarchical state.

4. State actions sorting

– state actions assigned to transitions must be sorted

in such way that EXIT actions must be at the top of

the list followed by ENTRY actions.

B. Verification

Verification is done after first step for

consistency checking so that all the stapes after this

stage should be processed correctly.

C. Optimizing Diagram

Optimization algorithms provided by state

chart generator implemented in CodeDesigner RAD

are aimed to reduction of used states and to

simplifications of the diagram topology. Moreover,

they allow code generator to produce source code

easily readable by humans. The diagram optimization

process consists of three dependent steps which can

be performed in several iterations until further

optimization is required and a defined maximum

iteration count is not reached.

D. Generator

There are many existing code generators are

present for generating code from UML diagrams. As

there are 14 different types of UML diagrams are

present, different tools are also present for obtaining

efficient code in different languages from different

UML Diagrams. Many generators provide simply the

skeleton for an application and then we have to write

some code into it for making it executable

application.

Code generation algorithms implemented in

CodeDesigner RAD aggregates set of so called

element processors responsible for production of

source code fragments based on processed diagram

element. Generally, the element processors can be

shared between several code generation algorithms or

several diagram elements if they produce the same

source code.

Code Optimizations
Generated source code can be optimized at

several different levels. Optimizations performed on

processed diagrams discussed in Chapter II.C. lead to

production of optimized source codes with reduced

extent or better readability due to better source

diagram’s topology. Also, some low-level

optimization can be performed to obtain efficient

code. Optimization of generated helps in obtaining

efficient code,eliminating unused code etc.

http://www.ijesrt.com/

[Pawde et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[551-554]

Conclusion
This paper presents an idea for code

generation from uml diagram. Simple code can be

implemented using this method. But complex code

generation is not possible using this method.

References
[1] Object Management Group (OMG), Unified

Modeling Language Specification, Version

2.1.1, (2007-02-07).

[2] Booch, G., Object Oriented Design with

Applications, Benjamin/Cummings,

Redwood, California, 1991. ISBN: 0-8053-

0091-0, ISSN: 0896-8438

[3] Coad, P., and E. Youdon, Object-Oriented

Analysis, Prentice Hall, Eaglewood Cliffs,

New Jersey, 1991. ISBN: 0-13-630070-7

[4] Herrington, J., Code Generation in Action,

Manning, 2003.

[5] Michal Bližˇnák. CodeDesigner RAD

homepage. http://codedesigner.org/, 2011.

[6] ‘http://www.ejb3.org/’, 2 November 2010

[7] ‘http://www.altova.com/umodel/uml-code-

generation.html’, 2 November 2011

[8] ‘http://www.magicdraw.com/’, 2 November

2010

[9] ‘http://www.visual-

paradigm.com/product/vpuml/’, 2 November

2010

[10] Niaz, I.A., Tanaka, J.: ‘An object-oriented

approach to generate Java code from UML

statecharts’, Int. J. Comput. Inf. Sci., 2005,

6, (2)

[11] Ali, J., Tanaka, J.: ‘Converting statecharts

into Java code’. Proc. Of Fourth World

Conf. on Integrated Design and Process

Technology (IDPT99), Dallas, Texas, USA,

200

[12] Niaz, I.A., Tanaka, J.: ‘Mapping UML

statecharts to Java code’. Proc. Of IASTED

Int. Conf. on Software Engineering (SE

2004), Innsbruck, Austria, 2004, pp. 111–

116

[13] Engels, G., Hucking, R., Sauer, S., Wagner,

A.: ‘UML collaboration diagrams and their

transformations to Java’. Proc. of the

Second Int. Conf. on the UML, 1999, (LNCS

1723) pp. 473–488

[14] http://objectgeneration.com/eclipse/04-

sequencediagrams.html’, 2 November 2010

[15] J. Ali, and J. Tanaka, “An Object Oriented

Approach to Generate Executable Code

from the OMT-based Dynamic Model”,

Journal of Integrated Design and Process

Science (SDPT), vol. 2, no. 4, 1998, pp.65-

77.

[16] D. Harel, and E. Gery, “Executable Object

Modeling with Statecharts”, 18th

International Conference on Software

Engineering (SE’96), IEEE Computer

Society Press, Berlin, Germany, March 25-

29, 1996, pp.246-257.

[17] Donald E. Knuth. The Art of Computer

Programming Vol 1.Boston: Addison-

Wesley, 3rd edition, 1997.

http://www.ijesrt.com/

